## TERRAMETRA

## OTHER EQUATION TYPES

## Terrametra Resources

Lynn Patten

# 1.6 <br> <br> OTHER TYPES OF EQUATIONS 

 <br> <br> OTHER TYPES OF EQUATIONS}

- Rational Equations
- Equations with Radicals
- Equations with Rational Exponents
- Equations Quadratic in Form


## TERRAMETRA

## Rational Equations

## Terrametra Resources

Lynn Patten

## OTHER TYPES OF EQUATIONS

## RATIONAL EQUATIONS

A rational equation is an equation that has a rational expression for one or more terms.

To solve a rational equation, multiply each side by the least common denominator (LCD) of all the terms and then solve the resulting equation.

Because a rational expression is not defined when its denominator is 0 , proposed solutions for which any denominator equals 0 are excluded from the solution set.

## Solving Rational Equations that Lead to Linear Equations

1(a) Solve the equation: $\frac{3 x-1}{3}-\frac{2 x}{x-1}=x$

## Solution:

The least common denominator is $3(x-1)$, which is equal to 0 if $x=1$. Therefore, 1 cannot possibly be a solution of this equation.

Multiply by the LCD, $3(x-1)$, where $x \neq 1$.

$$
\begin{aligned}
& 3(x-1)\left(\frac{3 x-1}{3}\right)-3(x-1)\left(\frac{2 x}{x-1}\right)=3(x-1) x \\
& \quad(x-1)(3 x-1)-3(2 x)=3 x(x-1) \quad \text { Divide out } \\
& \text { common factors. }
\end{aligned}
$$

## Solving Rational Equations that Lead to Linear Equations

Solution (cont'd):

$$
\begin{aligned}
(x-1)(3 x-1)-3(2 x) & =3 x(x-1) & & \\
3 x^{2}-4 x+1-6 x & =3 x^{2}-3 x & & \text { Multiply. } \\
1-10 x & =-3 x & & \text { Subtract } 3 x^{2} \text { (both sides). } \\
1 & =7 x & & \text { Combine like terms. } \\
x & =\frac{1}{7} & & \text { Solve the linear equation. }
\end{aligned}
$$

The proposed solution meets the requirement that $x \neq 1$ and does not cause any denominator to equal 0 .
Substitute to check for correct algebra ...
The solution set is $\left\{\frac{1}{7}\right\}$

TERRAMETRA

## Example 1

## Solving Rational Equations that

 Lead to Linear Equations1(b) Solve the equation:

$$
\frac{x}{x-2}=\frac{2}{x-2}+2
$$

Solution:
Multiply by the LCD, $x-2$, where $x \neq 2$.

$$
\begin{array}{rlrl}
(x-2)\left(\frac{x}{x-2}\right) & =(x-2)\left(\frac{2}{x-2}\right)+(x-2) 2 \\
x & =2+2(x-2) & & \text { Divide out common factors. } \\
x & =2+2 x-4 & & \text { Distributive property. } \\
-x & =-2 & & \text { Solve the linear equation. } \\
x & =2 & & \text { Proposed solution. }
\end{array}
$$

## Solving Rational Equations that Lead to Linear Equations

1(b) Solve the equation:

$$
\frac{x}{x-2}=\frac{2}{x-2}+2
$$

Solution (cont'd):

$$
x=2 \quad \text { Proposed solution. }
$$

The proposed solution is 2 . However, the variable is restricted to real numbers except 2. If $x=2$, then not only does it cause a zero denominator, but multiplying by $x-2$ in the first step is multiplying both sides by 0 , which is not valid. Thus, ...

The solution set is $\emptyset$.

Example 2

## Solving Rational Equations that Lead to Quadratic Equations

2(a) Solve the equation: $\frac{3 x+2}{x-2}+\frac{1}{x}=\frac{-2}{x^{2}-2 x}$
Solution:

$$
\frac{3 x+2}{x-2}+\frac{1}{x}=\frac{-2}{x(x-2)} \quad \begin{aligned}
& \text { Factor the last } \\
& \text { denominator } .
\end{aligned}
$$

Multiply by $x(x-2)$, where $x \neq 0,2$.

$$
\begin{aligned}
& x(x-2)\left(\frac{3 x+2}{x-2}\right)+x(x-2)\left(\frac{1}{x}\right)=x(x-2)\left(\frac{-2}{x(x-2)}\right) \\
& x(3 x+2)+(x-2)=-2 \quad \text { Divide out } \\
& x \quad \text { common factors. }
\end{aligned}
$$

Example 2

## Solving Rational Equations that Lead to Quadratic Equations

2(a) Solve the

$$
x(3 x+2)+(x-2)=-2
$$

$$
3 x^{2}+2 x+x-2=-2 \text { Distributive property. }
$$

Set $3 x^{2}+3 x=0 \quad$ Standard form.
each factor equal to 0 .

$$
\frac{3 x+2}{x-2}+\frac{1}{x}=\frac{-2}{x^{2}-2 x}
$$

Solution (cont'd):

| Set |
| :---: |
| each factor |
| equal to 0. |

$3 x(x+1)=0 \quad$ Factor.
$3 x=0$ or $x+1=0 \quad$ Zero-factor property.

## Solving Rational Equations that

 Lead to Quadratic Equations2(a) Solve the equation:

$$
\frac{3 x+2}{x-2}+\frac{1}{x}=\frac{-2}{x^{2}-2 x}
$$

Solution (cont'd):

$$
\begin{aligned}
3 x & =0 \text { or } x+1=0 \\
x & =0 \text { or } x=-1 \quad \text { Proposed solutions. }
\end{aligned}
$$

Because of the restriction $x \neq 0$, the only valid solution is $-1 \ldots$
The solution set is $\{-1\}$

## Example 2

## Solving Rational Equations that Lead to Quadratic Equations

2(b) Solve the equation: $\frac{-4 x}{x-1}+\frac{4}{x+1}=\frac{-8}{x^{2}-1}$
Solution:

$$
\begin{gathered}
\frac{-4 x}{x-1}+\frac{4}{x+1}=\frac{-8}{(x+1)(x-1)} \quad \text { Factor. } \\
(x+1)(x-1)\left(\frac{-4 x}{x-1}\right)+(x+1)(x-1) \frac{4}{x+1} \\
\begin{array}{ll} 
& \begin{array}{l}
\text { Multiply by } \\
x \neq \pm 1 \\
x \neq 1
\end{array} \\
& =(x+1)(x-1)\left(\frac{-8}{(x+1)(x-1)}\right)
\end{array}
\end{gathered}
$$

# Example 2 <br> Solving Rational Equations that Lead to Quadratic Equations 

2(b) Solve the equation:

Solution (cont'd):

$$
\begin{aligned}
-4 x(x+1)+4(x-1) & =-8 & & \text { Divide out common factors. } \\
-4 x^{2}-4 x+4 x-4 & =-8 & & \text { Distributive property. } \\
-4 x^{2}+4 & =0 & & \text { Standard form. } \\
x^{2}-1 & =0 & & \text { Divide by }-4 . \\
(x+1)(x-1) & =0 & & \text { Factor. }
\end{aligned}
$$

## Solving Rational Equations that

 Lead to Quadratic Equations2(b) Solve the equation: $\frac{-4 x}{x-1}+\frac{4}{x+1}=\frac{-8}{x^{2}-1}$

Solution (cont'd):

$$
\begin{aligned}
\quad(x+1)(x-1)=0 & \\
x+1=0 \text { or } x-1=0 & \text { Zero-factor Property. } \\
x=-1 \text { or } x=1 & \text { Proposed solutions. }
\end{aligned}
$$

Neither proposed solution is valid ...
The solution set is $\varnothing$

## TERRAMETRA

## Equations Involving Radicals

Terrametra Resources
Lynn Patten

## POWER PROPERTY=

## POWER PROPERTY

If $\boldsymbol{P}$ and $\boldsymbol{Q}$ are algebraic expressions, then every solution of the equation

$$
P=Q
$$

is also a solution of the equation

$$
P^{n}=Q^{n}
$$

for any positive integer $\boldsymbol{n}$.

## POWER PROPERTY

## Caution

Be very careful when using the power property.
It does not say that the equations

$$
\boldsymbol{P}=\boldsymbol{Q} \text { and } \boldsymbol{P}^{n}=\boldsymbol{Q}^{\boldsymbol{n}}
$$

are equivalent;
it says only that each solution of the original equation

$$
P=Q
$$

is also a solution of the new equation

$$
P^{n}=Q^{n} .
$$

## SOLVING an EQUATION INVOLVING RADICALS

## Solving an Equation Involving Radicals

Step 1 Isolate the radical on one side of the equation.
Step 2 Raise each side of the equation to a power that is the same as the index of the radical so that the radical is eliminated. If the equation still contains a radical, repeat Steps 1 and 2.
Step 3 Solve the resulting equation.
Step 4 Check each proposed solution in the original equation.

TERRAMETRA (Square Root)

3(a) Solve: $\quad x-\sqrt{15-2 x}=0$
Solution:

$$
\begin{array}{rlrl}
x & =\sqrt{15-2 x} & & \text { Isolate the radical. } \\
x^{2} & =(\sqrt{15-2 x})^{2} & & \text { Square each side. } \\
x^{2} & =15-2 x &
\end{array}
$$

$$
x^{2}+2 x-15=0
$$

Solve the quadratic equation.

$$
(x+5)(x-3)=0
$$

$$
x+5=0 \text { or } x-3=0
$$

$$
x=-5 \text { or } x=3
$$

Only 3 is a valid solution ... The solution set is $\{3\}$

## Example 4

## Solving an Equation Containing Two Radicals

4(a) Solve: $\sqrt{2 x+3}-\sqrt{x+1}=1$

## Solution:

When an equation contains two radicals,
begin by isolating one of the radicals on one side of the equation.

$$
\begin{aligned}
\sqrt{2 x+3}-\sqrt{x+1} & =1 & \\
\sqrt{2 x+3} & =1+\sqrt{x+1} & \text { Isolate } \sqrt{2 x+3} \\
(\sqrt{2 x+3})^{2} & =(1+\sqrt{x+1})^{2} & \text { Square each side. }
\end{aligned}
$$

## Example 4

## Solving an Equation Containing Two Radicals

4(a) Solve: $\sqrt{2 x+3}-\sqrt{x+1}=1$
Solution (cont'd):

$$
\begin{aligned}
(\sqrt{2 x+3})^{2} & =(1+\sqrt{x+1})^{2} \\
2 x+3 & =1+2 \sqrt{x+1}+(x+1) \quad \text { Be careful ! }
\end{aligned}
$$

## Don't forget this

term when squaring.

$$
\begin{aligned}
x+1 & =2 \sqrt{x+1} \\
(x+1)^{2} & =(2 \sqrt{x+1})^{2}
\end{aligned}
$$

$$
x^{2}+2 x+1=4(x+1) \quad \text { Apply the exponents. }
$$

## Example 4

## Solving an Equation Containing Two Radicals

4(a) Solve: $\quad \sqrt{2 x+3}-\sqrt{x+1}=1$
Solution (cont'd):

$$
\begin{array}{cl}
x^{2}+2 x+1=4 x+4 & \text { Distributive property. } \\
x^{2}-2 x-3=0 & \text { Solve the quadratic equation. } \\
(x-3)(x+1)=0 & \text { Factor. } \\
x-3=0 \text { or } x+1=0 & \text { Zero-factor property. } \\
x=3 \text { or } x=-1 & \text { Proposed solutions. } \\
\text { Check each proposed solution in the original equation. } \\
\text { Both } 3 \text { and }-1 \text { are solutions of the original equation } \ldots \\
\text { The solution set is }\{-\mathbb{1}, 3\}
\end{array}
$$

## Solving an Equation Containing Two Radicals

## Caution

Remember to isolate a radical in Step 1.
It would be incorrect to square each term individually as the first step in Example 4.

## Example 5

Solving an Equation Containing a Radical (Cube Root)

5(a) Solve: $\sqrt[3]{4 x^{2}-4 x+1}-\sqrt[3]{x}=0$
Solution:

$$
\begin{aligned}
\sqrt[3]{4 x^{2}-4 x+1} & =\sqrt[3]{x} & & \text { Isolate a radical. } \\
\left(\sqrt[3]{4 x^{2}-4 x+1}\right)^{3} & =(\sqrt[3]{x})^{3} & & \text { Cube each side. } \\
4 x^{2}-4 x+1 & =x & & \text { Apply the exponents } \\
4 x^{2}-5 x+1 & =0 & & \begin{array}{l}
\text { Solve the quadratic } \\
\text { equation. }
\end{array} \\
(4 x-1)(x-1) & =0 & & \text { Factor. }
\end{aligned}
$$

TERRAMETRA

## Example 5

Solving an Equation Containing a Radical (Cube Root)

5(a) Solve: $\sqrt[3]{4 x^{2}-4 x+1}-\sqrt[3]{x}=0$
Solution (cont'd):

$$
\begin{aligned}
(4 x-1)(x-1)=0 & \\
4 x-1=0 \text { or } x-1=0 & \text { Zero-factor property. } \\
x=\frac{1}{4} \text { or } x=1 & \text { Proposed solutions }
\end{aligned}
$$

Both are valid solutions ...
The solution set is $\left\{\frac{1}{4}, \mathbb{1}\right\}$

## TERRAMETRA

## Equations with Rational Exponents

Terrametra Resources

Lynn Patten

## Example 6

## Solving Equations with Rational Exponents

6(a) Solve: $x^{3 / 5}=27$
Solution:

$$
\begin{array}{rlrl}
x^{3 / 5} & =27 & \\
\left(x^{3 / 5}\right)^{5 / 3} & =27^{5 / 3} & \begin{array}{l}
\text { Raise each side to the power } \\
\text { the reciprocal of the exponen }
\end{array} \\
x & =243 & & 27^{5 / 3}=(\sqrt[3]{27})^{5}=3^{5}=243
\end{array}
$$

The solution set is $\{243\}$

## Example 6

## Solving Equations with Rational Exponents

6(b) Solve: $\quad(x-4)^{2 / 3}=16$
Solution:

$$
\begin{aligned}
{\left[(x-4)^{2 / 3}\right]^{3 / 2} } & = \pm 16^{3 / 2} & \begin{array}{l}
\text { Raise each side to the power 3/2. } \\
\text { Insert } \pm \text { since this involves an even root, } \\
\text { as indicated by the } 2 \text { in the denominator }
\end{array} \\
x-4 & = \pm 64 & \begin{array}{l} 
\pm 16^{3 / 2}= \pm(\sqrt{16})^{3}= \pm 4^{3}= \pm 64
\end{array} \\
x & =4 \pm 64 & \\
x=-60 \text { or } x & =68 & \text { Proposed solutions. }
\end{aligned}
$$

Both proposed solutions check in the original equation ...
The solution set is $\{-60,68\}$

## EQUATIONS QUADRATIC in FORM

## Equations Quadratic in Form

An equation is said to be quadratic in form if it can be written as

$$
a u^{2}+b u+c=\mathbf{0},
$$

Where $\boldsymbol{a} \neq \mathbf{0}$ and $\boldsymbol{u}$ is some algebraic expression.

## Example 7

## Solving Equations Quadratic in Form

7(a) Solve: $\quad(x+1)^{2 / 3}-(x+1)^{1 / 3}-2=0$
Solution:

$$
\begin{array}{cll}
\text { Since } & \begin{aligned}
(x+1)^{2 / 3}=\left[(x+1)^{1 / 3}\right]^{2} & \text { Let } u=(x+1)^{1 / 3} . \\
u^{2}-u-2 & =0
\end{aligned} & \text { Substitute. } \\
(u-2)(u+1)=0 & \text { Factor. } \\
u-2=0 \text { or } u+1=0 & \text { Zero-factor property } \\
u=2 \text { or } u=-1 &
\end{array}
$$

Example 7

## Solving Equations Quadratic in Form

7(a) Solve: $\quad(x+1)^{2 / 3}-(x+1)^{1 / 3}-2=0$ Solution (cont'd):

$$
u=2 \text { or } u=-1
$$

$$
(x+1)^{1 / 3}=2 \text { or }(x+1)^{1 / 3}=-1 \quad \text { Replace } u \text { with }(x+1)^{1 / 3}
$$

$\left[(x+1)^{1 / 3}\right]^{3}=2^{3}$ or $\left[(x+1)^{1 / 3}\right]^{3}=(-1)^{3} \quad$ Cube each side.

$$
x=7 \text { or } x=-2
$$

Proposed solutions.
Both proposed solutions check in the original equation ...
The solution set is $\{-2,7\}$

## Example 7

## Solving Equations Quadratic in Form

7(b) Solve: $6 x^{-2}+x^{-1}=2$
Solution:

$$
\begin{aligned}
6 x^{-2}+x^{-1}-2=0 & \text { Subtract } 2 \text { (both sides). } \\
6 u^{2}+u-2=0 & \text { Let } u=x^{-1} \text {; then } u^{2}=x^{-2} . \\
(3 u+2)(2 u-1)=0 & \text { Factor. } \\
3 u+2=0 \text { or } 2 u-1=0 & \text { Zero-factor property. } \\
u=-\frac{2}{3} \text { or } u=\frac{1}{2} & \begin{array}{c}
\text { Remember to } \\
\text { substitute for } u .
\end{array}
\end{aligned}
$$

## Example 7

## Solving Equations Quadratic in Form

7(b) Solve: $\quad 6 x^{-2}+x^{-1}=2$
Solution (cont'd):

$$
\begin{aligned}
u & =-\frac{2}{3} \text { or } u=\frac{1}{2} \\
x^{-1} & =-\frac{2}{3} \text { or } x^{-1}=\frac{1}{2} \quad \text { Resubstitute. } \\
x & =-\frac{3}{2} \text { or } x=2 \quad x^{-1} \text { is the reciprocal of } x
\end{aligned}
$$

Both proposed solutions check in the original equation ...
The solution set is $\left\{-\frac{3}{2}, 2\right\}$

## Solving Equations Quadratic in Form

## Caution

When using a substitution variable in solving an equation that is quadratic in form, do not forget the step that gives the solution in terms of the original variable.

## Example 8

## Solving Equations Quadratic in Form

8(a) Solve: $12 x^{4}-11 x^{2}+2=0$
Solution:

$$
\begin{aligned}
12\left(x^{2}\right)^{2}-11 x^{2}+2=0 & x^{4}=\left(x^{2}\right)^{2} \\
12 u^{2}-11 u+2=0 & \text { Let } u=x^{2} \text {; then } u^{2}=x^{4} . \\
(3 u-2)(4 u-1)=0 & \text { Solve the quadratic equation. } \\
3 u-2=0 \text { or } 4 u-1=0 & \text { Zero-property factor. } \\
u=\frac{2}{3} \text { or } u=\frac{1}{4} & \text { Solve the linear equations. }
\end{aligned}
$$

TERRAMETRA

## Example 8 <br> Solving Equations Quadratic in Form

8(a) Solve: $12 x^{4}-11 x^{2}+2=0$
Solution (cont'd):

$$
\begin{gathered}
u=\frac{2}{3} \text { or } u=\frac{1}{4} \\
x^{2}=\frac{2}{3} \text { or } x^{2}=\frac{1}{4} \\
x= \pm \sqrt{\frac{2}{3}} \text { or } x= \pm \sqrt{\frac{1}{4}}
\end{gathered}
$$

Replace $\boldsymbol{u}$ with $\boldsymbol{x}^{2}$.

Square root property.

## Example 8

## Solving Equations Quadratic in Form

8(a) Solve: $12 x^{4}-11 x^{2}+2=0$
Solution (cont'd):

$$
\begin{aligned}
x= \pm & \pm \frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} \text { or } x= \pm \frac{1}{2} \quad \text { Simplify radicals. } \\
x & = \pm \frac{\sqrt{6}}{3} \text { or } x= \pm \frac{1}{2} \\
& \text { The solution set is }\left\{ \pm \frac{\sqrt{6}}{3}, \pm \frac{1}{2}\right\}
\end{aligned}
$$

## Solving Equations Quadratic in Form

## Note

Some equations that are quadratic in form are simple enough to avoid using the substitution variable technique. To solve ...

$$
12 x^{4}-11 x^{2}+2=0
$$

we could factor directly as $\left(3 x^{2}-2\right)\left(4 x^{2}-1\right)$,
set each factor equal to zero, and
then solve the resulting two quadratic equations.
Which method to use is a matter of personal preference.

