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1.6 

OTHER TYPES OF EQUATIONS 

 

RATIONAL EQUATIONS 

A rational equation is an equation that has 

a rational expression for one or more terms. 
 

To solve a rational equation, multiply each side 

by the least common denominator (LCD) of all the terms 

and then solve the resulting equation. 
 

Because a rational expression is not defined 

when its denominator is 0, proposed solutions 

for which any denominator equals 0 

are excluded from the solution set. 



Example 1 

Solving Rational Equations that 

Lead to Linear Equations 

3𝑥 − 1

3
−

2𝑥

𝑥 − 1
= 𝑥 

1(a) Solve the equation: 

Solution:  

The least common denominator is  3 𝑥 − 1 , which is equal to  0  if  𝑥 = 1. 

Therefore, 1 cannot possibly be a solution of this equation.  

3(𝑥 − 1)
3𝑥 − 1

3
− 3(𝑥 − 1)

2𝑥

𝑥 − 1
= 3(𝑥 − 1)𝑥 

Multiply by the LCD,  3 𝑥 − 1 ,  where  𝑥 ≠ 1. 

Divide out 

common factors. 
(𝑥 − 1)(3𝑥 − 1) − 3(2𝑥) = 3𝑥(𝑥 − 1) 



Example 1 

Solving Rational Equations that 

Lead to Linear Equations 

Solution (cont’d): 

3𝑥2 − 4𝑥 + 1 − 6𝑥 = 3𝑥2 − 3𝑥 Multiply. 

1 − 10𝑥 = −3𝑥 
Subtract 3𝑥2 (both sides). 

Combine like terms. 

𝑥 =
1

7
 

Solve the linear equation. 

The proposed solution meets the requirement that  𝑥 ≠ 1  

and does not cause any denominator to equal  0. 

Substitute to check for correct algebra … 

 The solution set is  
𝟏

𝟕
 

1 = 7𝑥 

Proposed solution. 

(𝑥 − 1)(3𝑥 − 1) − 3(2𝑥) = 3𝑥(𝑥 − 1) 



Example 1 

Solving Rational Equations that 

Lead to Linear Equations 

𝑥

𝑥 − 2
=

2

𝑥 − 2
+ 2 

1(b) Solve the equation: 

Solution:  

(𝑥 − 2)
𝑥

𝑥 − 2
= (𝑥 − 2)

2

𝑥 − 2
+ (𝑥 − 2)2 

Multiply by the LCD,  𝑥 − 2,  where  𝑥 ≠ 2. 

Divide out common factors. 𝑥 = 2 + 2(𝑥 − 2) 

𝑥 = 2 + 2𝑥 − 4 Distributive property. 

−𝑥 = −2 Solve the linear equation. 

𝑥 = 2 Proposed solution. 



Example 1 

Solving Rational Equations that 

Lead to Linear Equations 

𝑥 = 2 Proposed solution. 

The proposed solution is 2. 

However, the variable is restricted to real numbers except 2. 

If  𝑥 = 2,  then not only does it cause a zero denominator, 

but multiplying by  𝑥 − 2  in the first step is multiplying both sides by 0, 

which is not valid.  Thus, … 

1(b) Solve the equation: 

Solution (cont’d):  

The solution set is  ∅ .  

𝑥

𝑥 − 2
=

2

𝑥 − 2
+ 2 



Example 2 

Solving Rational Equations that 

Lead to Quadratic Equations 

2(a) Solve the equation: 

Solution:  

3𝑥 + 2

𝑥 − 2
+
1

𝑥
=

−2

𝑥2 − 2𝑥
 

3𝑥 + 2

𝑥 − 2
+
1

𝑥
=

−2

𝑥(𝑥 − 2)
 

Factor the last 

denominator. 

𝑥(𝑥 − 2)
3𝑥 + 2

𝑥 − 2
+ 𝑥(𝑥 − 2)

1

𝑥
= 𝑥(𝑥 − 2)

−2

𝑥(𝑥 − 2)
 

Multiply by  𝑥 𝑥 − 2 ,  where  𝑥 ≠ 0, 2. 

𝑥(3𝑥 + 2) + (𝑥 − 2) = −2 
Divide out 

common factors. 



Example 2 

Solving Rational Equations that 

Lead to Quadratic Equations 

2(a) Solve the equation: 

Solution (cont’d):  

3𝑥 + 2

𝑥 − 2
+
1

𝑥
=

−2

𝑥2 − 2𝑥
 

𝑥(3𝑥 + 2) + (𝑥 − 2) = −2 

3𝑥2 + 2𝑥 + 𝑥 − 2 = −2 Distributive property. 

3𝑥2 + 3𝑥 = 0 Standard form. 

3𝑥(𝑥 + 1) = 0 Factor. 

3𝑥 = 0  or  𝑥 + 1 = 0 Zero-factor property. 

Set 

each factor 

equal to 0. 



Example 2 

Solving Rational Equations that 

Lead to Quadratic Equations 

2(a) Solve the equation: 

Solution (cont’d):  

3𝑥 + 2

𝑥 − 2
+
1

𝑥
=

−2

𝑥2 − 2𝑥
 

3𝑥 = 0  or  𝑥 + 1 = 0 

𝑥 = 0  or  𝑥 = −1 Proposed solutions. 

Because of the restriction  𝑥 ≠ 0,  the only valid solution is  −1 … 
 

The solution set is  −𝟏   



Example 2 

Solving Rational Equations that 

Lead to Quadratic Equations 

2(b) Solve the equation: 

Solution:  

−4𝑥

𝑥 − 1
+

4

𝑥 + 1
=

−8

𝑥2 − 1
 

−4𝑥

𝑥 − 1
+

4

𝑥 + 1
=

−8

(𝑥 + 1)(𝑥 − 1)
 Factor. 

(𝑥 + 1)(𝑥 − 1)
−4𝑥

𝑥 − 1
+ (𝑥 + 1)(𝑥 − 1)

4

𝑥 + 1
 

Multiply by 

𝑥 + 1 𝑥 − 1 , 

𝑥 ≠ ±1. 

= (𝑥 + 1)(𝑥 − 1)
−8

(𝑥 + 1)(𝑥 − 1)
 



Example 2 

Solving Rational Equations that 

Lead to Quadratic Equations 

2(b) Solve the equation: 

Solution (cont’d):  

−4𝑥(𝑥 + 1) + 4(𝑥 − 1) = −8 Divide out common factors. 

−4𝑥2 − 4𝑥 + 4𝑥 − 4 = −8 Distributive property. 

−4𝑥2 + 4 = 0 Standard form. 

𝑥2 − 1 = 0 Divide by −4. 

(𝑥 + 1)(𝑥 − 1) = 0 Factor. 



Example 2 

Solving Rational Equations that 

Lead to Quadratic Equations 

2(b) Solve the equation: 

Solution (cont’d):  

−4𝑥

𝑥 − 1
+

4

𝑥 + 1
=

−8

𝑥2 − 1
 

(𝑥 + 1)(𝑥 − 1) = 0 

𝑥 + 1 = 0  or  𝑥 − 1 = 0 Zero-factor Property. 

Neither proposed solution is valid … 

𝑥 = −1  or  𝑥 = 1 Proposed solutions. 

The solution set is  ∅  
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POWER PROPERTY= 

 

POWER PROPERTY 

If  𝑷  and  𝑸  are algebraic expressions, 

then every solution of the equation  

𝑷 = 𝑸  

is also a solution of the equation 

𝑷𝒏 = 𝑸𝒏 

for any positive integer  𝒏. 



POWER PROPERTY 

        Caution 
 

Be very careful when using the power property. 

It does not say that the equations 

 𝑷 = 𝑸  and  𝑷𝒏 = 𝑸𝒏  

are equivalent; 

it says only that each solution of the original equation 

 𝑷 = 𝑸  

is also a solution of the new equation 

 𝑷𝒏 = 𝑸𝒏. 



SOLVING an EQUATION 

INVOLVING RADICALS 

 

Solving an Equation Involving Radicals 

Step 1  Isolate the radical on one side of the equation. 

Step 2  Raise each side of the equation to a power that is the same 

 as the index of the radical so that the radical is eliminated. 

If the equation still contains a radical, 

 repeat Steps 1 and 2. 

Step 3  Solve the resulting equation. 

Step 4  Check each proposed solution in the original equation. 



Example 3 

Solving an Equation Containing a Radical 

(Square Root) 

3(a) Solve: 𝑥 − 15 − 2𝑥 = 0 

Solution: 𝑥 = 15 − 2𝑥 

𝑥2 = 15 − 2𝑥 

𝑥2 + 2𝑥 − 15 = 0 
Solve the 

quadratic equation. 

Isolate the radical. 

Square each side. 

(𝑥 + 5)(𝑥 − 3) = 0 

Zero-factor property. 

Proposed solutions. 

𝑥2 = 15 − 2𝑥
2
 

𝑥 + 5 = 0  or  𝑥 − 3 = 0 

𝑥 = −5  or  𝑥 = 3 

Only  3  is a valid solution … 

The solution set is  𝟑  

 



Example 4 

Solving an Equation Containing Two Radicals 

When an equation contains two radicals, 

begin by isolating one of the radicals on one side of the equation. 

                       

2𝑥 + 3 − 𝑥 + 1 = 1 

2𝑥 + 3 = 1 + 𝑥 + 1 

Square each side. 2𝑥 + 3
2
= 1 + 𝑥 + 1

2
 

4(a) Solve: 

Solution: 

Isolate  2𝑥 + 3. 

2𝑥 + 3 − 𝑥 + 1 = 1 



Example 4 

Solving an Equation Containing Two Radicals 

2𝑥 + 3 − 𝑥 + 1 = 1 4(a) Solve: 

Solution (cont’d): 

2𝑥 + 3 = 1 + 2 𝑥 + 1 + (𝑥 + 1) 

Don’t forget this 

term when squaring. 

Be careful ! 

𝑥 + 1 = 2 𝑥 + 1 
Isolate the 

remaining radical. 

𝑥 + 1 2 = 2 𝑥 + 1
2
 Square again. 

𝑥2 + 2𝑥 + 1 = 4(𝑥 + 1) Apply the exponents. 

2𝑥 + 3
2
= 1 + 𝑥 + 1

2
 



Example 4 

Solving an Equation Containing Two Radicals 

4(a) Solve: 

Solution (cont’d): 

𝑥2 + 2𝑥 + 1 = 4𝑥 + 4 

𝑥2 − 2𝑥 − 3 = 0 Solve the quadratic equation. 

(𝑥 − 3)(𝑥 + 1) = 0 

𝑥 − 3 = 0  or  𝑥 + 1 = 0 

𝑥 = 3  or  𝑥 = −1 Proposed solutions. 

Distributive property. 

Factor. 

Zero-factor property. 

Check each proposed solution in the original equation. 

Both  3  and  −1  are solutions of the original equation … 

The solution set is  −𝟏, 𝟑  

2𝑥 + 3 − 𝑥 + 1 = 1 



Solving an Equation Containing Two Radicals 

        Caution 
 

 

Remember to isolate a radical in Step 1. 

 

It would be incorrect to square each term individually 

as the first step in Example 4. 



Example 5 

Solving an Equation Containing a Radical 

(Cube Root) 

5(a) Solve: 

Solution: 

4𝑥2 − 4𝑥 + 1
3

= 𝑥3  Isolate a radical. 

4𝑥2 − 4𝑥 + 1
3 3

= 𝑥3 3 Cube each side. 

4𝑥2 − 4𝑥 + 1 = 𝑥 

4𝑥2 − 5𝑥 + 1 = 0 
Solve the quadratic 

equation. 

Apply the exponents. 

4𝑥2 − 4𝑥 + 1
3

− 𝑥3 = 0 

(4𝑥 − 1)(𝑥 − 1) = 0 Factor. 



Example 5 

Solving an Equation Containing a Radical 

(Cube Root) 

5(a) Solve: 

Solution (cont’d): 

4𝑥2 − 4𝑥 + 1
3

− 𝑥3 = 0 

(4𝑥 − 1)(𝑥 − 1) = 0 

4𝑥 − 1 = 0  or  𝑥 − 1 = 0 

𝑥 =
1

4
  or  𝑥 = 1 Proposed solutions 

Zero-factor property. 

Both are valid solutions … 

The solution set is  
𝟏

𝟒
, 𝟏  
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Example 6 

Solving Equations with Rational Exponents 

6(a) Solve: 

Solution: 

Raise each side to the power 5/3, 

the reciprocal of the exponent of 𝑥. 

𝑥3 5 = 27 

𝑥3 5 5 3 
= 275 3  

𝑥 = 243 275 3 = 27
3 5

= 35 = 243 

The solution set is  𝟐𝟒𝟑  

𝑥3 5 = 27 



Example 6 

Solving Equations with Rational Exponents 

6(b) Solve: 

Solution: 

𝑥 − 4 2 3 = 16 

Raise each side to the power 3/2. 

Insert ± since this involves an even root, 

as indicated by the 2 in the denominator. 

Proposed solutions. 

𝑥 − 4 2 3 3 2 
= ±163 2  

𝑥 − 4 = ±64 ±163 2 = ± 16
3
= ±  43 = ±   64 

𝑥 = 4 ± 64 

𝑥 = −60  or  𝑥 = 68 

Both proposed solutions check in the original equation … 

The solution set is  −𝟔𝟎, 𝟔𝟖  



EQUATIONS QUADRATIC in FORM 

 

Equations Quadratic in Form 

An equation is said to be quadratic in form 

if it can be written as 

 

𝒂𝒖𝟐 + 𝒃𝒖 + 𝒄 = 𝟎, 
 

Where  𝒂 ≠ 𝟎  and  𝒖  is some algebraic expression. 



Example 7 

Solving Equations Quadratic in Form 

7(a) Solve: 

Solution: 

(𝑥 + 1)2 3 − (𝑥 + 1)1 3 − 2 = 0 

(𝑥 + 1)2 3 = (𝑥 + 1)1 3 2
 

𝑢2 − 𝑢 − 2 = 0 Substitute. 

(𝑢 − 2)(𝑢 + 1) = 0 Factor. 

𝑢 − 2 = 0  or  𝑢 + 1 = 0 

𝑢 = 2  or  𝑢 = −1 

Zero-factor property 

Since Let  𝒖 = 𝒙 + 𝟏 𝟏 𝟑 . 



Example 7 

Solving Equations Quadratic in Form 

7(a) Solve: 

Solution (cont’d): 

(𝑥 + 1)2 3 − (𝑥 + 1)1 3 − 2 = 0 

𝑢 = 2  or  𝑢 = −1 

(𝑥 + 1)1 3 = 2  or  (𝑥 + 1)1 3 = −1 

(𝑥 + 1)1 3 3
= 23  or  (𝑥 + 1)1 3 3

= (−1)3 Cube each side. 

𝑥 = 7  or  𝑥 = −2 Proposed solutions. 

Both proposed solutions check in the original equation … 

Don’t forget 

this step. 

Replace  𝒖  with  𝒙 + 𝟏 𝟏 𝟑 . 

The solution set is  −𝟐, 𝟕  



Example 7 

Solving Equations Quadratic in Form 

7(b) Solve: 

Solution: 

2 16 2x x  

6𝑢2 + 𝑢 − 2 = 0 

Subtract 2 (both sides). 

(3𝑢 + 2)(2𝑢 − 1) = 0 Factor. 

3𝑢 + 2 = 0  or  2𝑢 − 1 = 0 

𝑢 = −
2

3
  or  𝑢 =

1

2
 

Zero-factor property. 

6𝑥−2 + 𝑥−1 − 2 = 0 

Remember to 

substitute for u. 

Let  𝒖 = 𝒙−𝟏; then  𝒖𝟐 = 𝒙−𝟐. 



Example 7 

Solving Equations Quadratic in Form 

7(b) Solve: 

Solution (cont’d): 

2 16 2x x  

𝑥−1 = −
2

3
  or  𝑥−1 =

1

2
 Resubstitute. 

𝑥 = −
3

2
  or  𝑥 = 2 𝑥−1  is the reciprocal of  𝑥 

𝑢 = −
2

3
  or  𝑢 =

1

2
 

Both proposed solutions check in the original equation … 

The solution set is  −
𝟑

𝟐
,  𝟐  



Solving Equations Quadratic in Form 

        Caution 
 

When using a substitution variable in solving an 

equation that is quadratic in form, 

do not forget the step that gives the solution 

in terms of the original variable. 



Example 8 

Solving Equations Quadratic in Form 

8(a) Solve: 

Solution: 

12 𝑥2 2 − 11𝑥2 + 2 = 0 𝑥4 = 𝑥2 2 

12𝑢2 − 11𝑢 + 2 = 0 Let  𝒖 = 𝒙𝟐; then  𝒖𝟐 = 𝒙𝟒. 

(3𝑢 − 2)(4𝑢 − 1) = 0 Solve the quadratic equation. 

3𝑢 − 2 = 0  or  4𝑢 − 1 = 0 Zero-property factor. 

𝑢 =
2

3
  or  𝑢 =

1

4
 Solve the linear equations. 

12𝑥4 − 11𝑥2 + 2 = 0 



Example 8 

Solving Equations Quadratic in Form 

Solution (cont’d): 

𝑥 = ±
2

3
  or  𝑥 = ±

1

4
 Square root property. 

𝑢 =
2

3
  or  𝑢 =

1

4
 

𝑥2 =
2

3
  or  𝑥2 =

1

4
 Replace  𝒖  with  𝒙𝟐. 

8(a) Solve: 12𝑥4 − 11𝑥2 + 2 = 0 



Example 8 

Solving Equations Quadratic in Form 

Solution (cont’d): 

Simplify radicals. 

𝑥 = ±
6

3
  or  𝑥 = ±

1

2
 

The solution set is  ±
𝟔

𝟑
, ±

𝟏

𝟐
 

8(a) Solve: 

𝑥 = ±
2

3
∙

3

3
  or  𝑥 = ±

1

2
 

12𝑥4 − 11𝑥2 + 2 = 0 



Solving Equations Quadratic in Form 

        Note 
Some equations that are quadratic in form 

are simple enough to avoid using 

the substitution variable technique. To solve … 

12𝑥4 − 11𝑥2 + 2 = 0 

we could factor directly as  3𝑥2 − 2 4𝑥2 − 1 , 

set each factor equal to zero, and 

then solve the resulting two quadratic equations. 

Which method to use is a matter of personal 

preference. 

 


