

TERRAMETRA

OTHER EQUATION TYPES

Terrametra Resources

Lynn Patten

1.6 OTHER TYPES OF EQUATIONS

- Rational Equations
- Equations with Radicals
- Equations with Rational Exponents
- Equations Quadratic in Form

TERRAMETRA

Rational Equations

Terrametra Resources

Lynn Patten

1.6 OTHER TYPES OF EQUATIONS

RATIONAL EQUATIONS

A *rational equation* is an equation that has a rational expression for one or more terms.

To solve a rational equation, multiply each side by the least common denominator (LCD) of all the terms and then solve the resulting equation.

Because a rational expression is not defined when its denominator is 0, *proposed solutions for which any denominator equals 0 are excluded from the solution set.*

1(a) Solve the equation: $\frac{3x-1}{3} - \frac{2x}{x-1} = x$

Solution:

The least common denominator is 3(x - 1), which is equal to 0 if x = 1. Therefore, 1 cannot possibly be a solution of this equation.

Multiply by the LCD, 3(x-1), where $x \neq 1$. $3(x-1)\left(\frac{3x-1}{3}\right) - 3(x-1)\left(\frac{2x}{x-1}\right) = 3(x-1)x$ (x-1)(3x-1) - 3(2x) = 3x(x-1)Divide out common factors.

Solution (cont'd):

$$(x - 1)(3x - 1) - 3(2x) = 3x(x - 1)$$

$$3x^{2} - 4x + 1 - 6x = 3x^{2} - 3x$$
 Multiply.

$$1 - 10x = -3x$$
 Subtract

$$1 = 7x$$
 Solve th

$$1$$

btract $3x^2$ (both sides). mbine like terms.

lve the linear equation.

Proposed solution.

The proposed solution meets the requirement that $x \neq 1$ and does not cause any denominator to equal 0. Substitute to check for correct algebra ... The solution set is $\left\{\frac{1}{7}\right\}$

 $x = \frac{1}{7}$

1(b) Solve the equation:

$$\frac{x}{x-2} = \frac{2}{x-2} + 2$$

Solution:

Multiply by the LCD, x - 2, where $x \neq 2$. $(x - 2)\left(\frac{x}{x - 2}\right) = (x - 2)\left(\frac{2}{x - 2}\right) + (x - 2)2$

x = 2 + 2(x - 2) Divide out common factors.

$$x = 2 + 2x - 4$$

Distributive property.

$$-x = -2$$

x = 2

Solve the linear equation.

Proposed solution.

1(b) Solve the equation:

$$\frac{x}{x-2} = \frac{2}{x-2} + 2$$

Solution (cont'd):

$$x = 2$$
 Proposed solution.

The proposed solution is 2.

However, the variable is restricted to real numbers except 2.

If x = 2, then not only does it cause a zero denominator,

but multiplying by x - 2 in the first step is multiplying both sides by 0, which is not valid. Thus, ...

The solution set is ϕ .

2(a) Solve the equation:

$$\frac{3x+2}{x-2} + \frac{1}{x} = \frac{-2}{x^2 - 2x}$$

Solution:

$$\frac{3x+2}{x-2} + \frac{1}{x} = \frac{-2}{x(x-2)}$$
 Factor the last denominator.

Multiply by x(x-2), where $x \neq 0$, 2.

$$x(x-2)\left(\frac{3x+2}{x-2}\right) + x(x-2)\left(\frac{1}{x}\right) = x(x-2)\left(\frac{-2}{x(x-2)}\right)$$

x(3x+2) + (x-2) = -2

Divide out common factors.

2(a) Solve the equation:

$$\frac{3x+2}{x-2} + \frac{1}{x} = \frac{-2}{x^2 - 2x}$$

Solution (cont'd):

$$x(3x + 2) + (x - 2) = -2$$

$$3x^{2} + 2x + x - 2 = -2$$
 Distributive property.

$$3x^{2} + 3x = 0$$
 Standard form.

$$3x(x + 1) = 0$$
 Factor.

$$3x = 0 \text{ or } x + 1 = 0$$
 Zero-factor property.

2(a) Solve the equation:

$$\frac{3x+2}{x-2} + \frac{1}{x} = \frac{-2}{x^2 - 2x}$$

Solution (cont'd):

$$3x = 0$$
 or $x + 1 = 0$
 $x = 0$ or $x = -1$ Proposed solutions.

Because of the restriction $x \neq 0$, the only valid solution is $-1 \dots$

The solution set is $\{-1\}$

2(b) Solve the equation:

$$\frac{-4x}{x-1} + \frac{4}{x+1} = \frac{-8}{x^2 - 1}$$

Solution:

$$\frac{-4x}{x-1} + \frac{4}{x+1} = \frac{-8}{(x+1)(x-1)}$$
 Factor.

$$(x+1)(x-1)\left(\frac{-4x}{x-1}\right) + (x+1)(x-1)\frac{4}{x+1} \quad \begin{array}{l} \text{Multiply by} \\ (x+1)(x-1), \\ x \neq \pm 1. \end{array}$$
$$= (x+1)(x-1)\left(\frac{-8}{(x+1)(x-1)}\right)$$

2(b) Solve the equation:

Solution (cont'd):

- -4x(x+1) + 4(x-1) = -8
 - $-4x^2 4x + 4x 4 = -8$
 - $-4x^2 + 4 = 0$
 - $x^2 1 = 0$
 - (x+1)(x-1)=0

Divide out common factors.

Distributive property.

Standard form.

Divide by -4.

Factor.

2(b) Solve the equation:

$$\frac{-4x}{x-1} + \frac{4}{x+1} = \frac{-8}{x^2 - 1}$$

Solution (cont'd):

$$(x + 1)(x - 1) = 0$$

$$x + 1 = 0 \text{ or } x - 1 = 0 \qquad \text{Zero-factor Property.}$$

$$x = -1 \text{ or } x = 1 \qquad \text{Proposed solutions.}$$

Neither proposed solution is valid ...

The solution set is Ø

TERRAMETRA

Equations Involving Radicals

Terrametra Resources

Lynn Patten

POWER PROPERTY=

POWER PROPERTY

If *P* and *Q* are algebraic expressions, then every solution of the equation P = Qis also a solution of the equation $P^n = Q^n$ for any positive integer *n*.

POWER PROPERTY

Caution

Be very careful when using the power property. It does <u>not</u> say that the equations P = Q and $P^n = Q^n$ are equivalent; it says only that each solution of the original equation P = Qis also a solution of the new equation $P^n = Q^n$.

SOLVING an EQUATION INVOLVING RADICALS

Solving an Equation Involving Radicals

Step 1 Isolate the radical on one side of the equation.

Step 2 Raise each side of the equation to a power that is the same as the index of the radical so that the radical is eliminated. If the equation still contains a radical, repeat Steps 1 and 2.

Step 3 Solve the resulting equation.

Step 4 Check each proposed solution in the original equation.

Example 3 Solving an Equation Containing a Radical (Square Root)

3(a) Solve:
$$x - \sqrt{15 - 2x} = 0$$

Solution: $x = \sqrt{15 - 2x}$ Isolate the radical.
 $x^2 = (\sqrt{15 - 2x})^2$ Square each side.
 $x^2 = 15 - 2x$
 $x^2 + 2x - 15 = 0$ Solve the
quadratic equation.
 $(x + 5)(x - 3) = 0$
 $x + 5 = 0$ or $x - 3 = 0$ Zero-factor property.
 $x = -5$ or $x = 3$ Proposed solutions.
Only 3 is a valid solution ...

The solution set is {3}

Example 4 Solving an Equation Containing Two Radicals

4(a) Solve: $\sqrt{2x+3} - \sqrt{x+1} = 1$

Solution:

When an equation contains two radicals,

begin by isolating one of the radicals on one side of the equation.

$$\sqrt{2x+3} - \sqrt{x+1} = 1$$

$$\sqrt{2x+3} = 1 + \sqrt{x+1}$$
 Isolate $\sqrt{2x+3}$.
$$\left(\sqrt{2x+3}\right)^2 = \left(1 + \sqrt{x+1}\right)^2$$
 Square each side.

Example 4 Solving an Equation Containing Two Radicals

4(a) Solve:
$$\sqrt{2x+3} - \sqrt{x+1} = 1$$

Solution (cont'd):

$$\left(\sqrt{2x+3}\right)^2 = \left(1+\sqrt{x+1}\right)^2$$

 $2x + 3 = 1 + 2\sqrt{x + 1} + (x + 1)$ Be careful ! Don't forget this term when squaring. $x + 1 = 2\sqrt{x + 1}$ Isolate the remaining radical. $(x + 1)^2 = (2\sqrt{x + 1})^2$ Square again. $x^2 + 2x + 1 = 4(x + 1)$ Apply the exponents.

Example 4 Solving an Equation Containing Two Radicals

4(a) Solve:
$$\sqrt{2x+3} - \sqrt{x+1} = 1$$

Solution (cont'd):

 $x^2 + 2x + 1 = 4x + 4$

$$x^2 - 2x - 3 = 0$$

(x-3)(x+1) = 0

x - 3 = 0 or x + 1 = 0

x = 3 or x = -1

Distributive property.

Solve the quadratic equation.

Factor.

Zero-factor property.

Proposed solutions.

Check each proposed solution in the *original* equation. Both 3 and -1 are solutions of the original equation ... The solution set is $\{-1, 3\}$

Solving an Equation Containing Two Radicals

Caution

Remember to isolate a radical in **Step 1**.

It would be incorrect to square each term individually as the first step in **Example 4**.

Example 5 Solving an Equation Containing a Radical (Cube Root)

5(a) Solve: $\sqrt[3]{4x^2 - 4x + 1} - \sqrt[3]{x} = 0$

Solution:

$$\sqrt[3]{4x^2 - 4x + 1} = \sqrt[3]{x}$$
 Isolate a radical.

$$\left(\sqrt[3]{4x^2 - 4x + 1}\right)^3 = (\sqrt[3]{x})^3$$

 $4x^2 - 4x + 1 = x$

Apply the exponents.

Cube each side.

 $4x^2 - 5x + 1 = 0$ Solve the quadratic equation.

$$(4x-1)(x-1)=0$$

Factor.

Example 5 Solving an Equation Containing a Radical (Cube Root)

5(a) Solve:
$$\sqrt[3]{4x^2 - 4x + 1} - \sqrt[3]{x} = 0$$

Solution (cont'd):

$$(4x - 1)(x - 1) = 0$$

$$4x - 1 = 0$$
 or $x - 1 = 0$ Zero-factor property.
 $x = \frac{1}{4}$ or $x = 1$ Proposed solutions

Both are valid solutions ... The solution set is $\left\{\frac{1}{4}, 1\right\}$

TERRAMETRA

Equations with Rational Exponents

Terrametra Resources

Lynn Patten

Example 6 Solving Equations with Rational Exponents

6(a) Solve: $x^{3/5} = 27$ *Solution:*

$$x^{3/5} = 27$$
$$(x^{3/5})^{5/3} = 27^{5/3}$$
$$x = 243$$

Raise each side to the power 5/3, the reciprocal of the exponent of x.

$$27^{5/3} = \left(\sqrt[3]{27}\right)^5 = 3^5 = 243$$

The solution set is {243}

Example 6 **Solving Equations with Rational Exponents**

6(b) Solve:
$$(x - 4)^{2/3} = 16$$

Solution:

$$\left[(x-4)^{2/3}\right]^{3/2} = \pm 16^{3/2}$$

Raise each side to the power 3/2. Insert \pm since this involves an even root, as indicated by the 2 in the denominator.

$$x - 4 = \pm 64$$
 $\pm 16^{3/2} = \pm (\sqrt{16})^3 = \pm 16^{3/2}$

$$x = 4 \pm 64$$

$$\pm 16^{3/2} = \pm (\sqrt{16})^3 = \pm 4^3 = \pm 64$$

$$x = -60$$
 or $x = 68$ Proposed solutions.

Both proposed solutions check in the original equation ...

The solution set is $\{-60, 68\}$

EQUATIONS QUADRATIC in FORM

Equations Quadratic in Form

An equation is said to be *quadratic in form* if it can be written as

$$au^2 + bu + c = 0,$$

Where $a \neq 0$ and u is some algebraic expression.

7(a) Solve:
$$(x + 1)^{2/3} - (x + 1)^{1/3} - 2 = 0$$

Solution:

Since
$$(x + 1)^{2/3} = [(x + 1)^{1/3}]^2$$
 Let $u = (x + 1)^{1/3}$.
 $u^2 - u - 2 = 0$ Substitute.
 $(u - 2)(u + 1) = 0$ Factor.
 $u - 2 = 0$ or $u + 1 = 0$ Zero-factor property
 $u = 2$ or $u = -1$

7(a) Solve:
$$(x + 1)^{2/3} - (x + 1)^{1/3} - 2 = 0$$

Solution (cont'd):
 $u = 2 \text{ or } u = -1$
 $(x + 1)^{1/3} = 2 \text{ or } (x + 1)^{1/3} = -1$ Replace u with $(x + 1)^{1/3}$
 $[(x + 1)^{1/3}]^3 = 2^3 \text{ or } [(x + 1)^{1/3}]^3 = (-1)^3$ Cube each side.
 $x = 7 \text{ or } x = -2$ Proposed solutions.

Both proposed solutions check in the original equation ...

The solution set is $\{-2, 7\}$

7(b) Solve: $6x^{-2} + x^{-1} = 2$ Solution:

- $6x^{-2} + x^{-1} 2 = 0$ Subtract 2 (both sides).
 - $6u^2 + u 2 = 0$ Let $u = x^{-1}$; then $u^2 = x^{-2}$.
- (3u+2)(2u-1) = 0
 - Factor.

$$3u + 2 = 0$$
 or $2u - 1 = 0$ Zero-factor property.
 $u = -\frac{2}{3}$ or $u = \frac{1}{2}$ Remember to substitute for *u*.

7(b) Solve: $6x^{-2} + x^{-1} = 2$

Solution (cont'd):

 $u = -\frac{2}{3}$ or $u = \frac{1}{2}$ $x^{-1} = -\frac{2}{3}$ or $x^{-1} = \frac{1}{2}$ Resubstitute. $x = -\frac{3}{2}$ or x = 2 x^{-1} is the reciprocal of xBoth proposed solutions check in the original equation ... The solution set is $\left\{-\frac{3}{2}, 2\right\}$

Solving Equations Quadratic in Form

When using a substitution variable in solving an equation that is quadratic in form, do not forget the step that gives the solution in terms of the original variable.

8(a) Solve: $12x^4 - 11x^2 + 2 = 0$ Solution:

$$12(x^2)^2 - 11x^2 + 2 = 0 \qquad x^4 = (x^2)^2$$

$$12u^2 - 11u + 2 = 0$$
 Let $u = x^2$; then $u^2 = x^4$.

$$(3u-2)(4u-1) = 0$$

Solve the quadratic equation.

$$3u - 2 = 0$$
 or $4u - 1 = 0$
 $u = \frac{2}{3}$ or $u = \frac{1}{4}$

Zero-property factor.

Solve the linear equations.

8(a) Solve: $12x^4 - 11x^2 + 2 = 0$

Solution (cont'd):

$$u = \frac{2}{3} \text{ or } u = \frac{1}{4}$$
$$x^{2} = \frac{2}{3} \text{ or } x^{2} = \frac{1}{4}$$
$$x = \pm \sqrt{\frac{2}{3}} \text{ or } x = \pm \sqrt{\frac{1}{4}}$$

Replace u with x^2 .

Square root property.

8(a) Solve: $12x^4 - 11x^2 + 2 = 0$

Solution (cont'd):

$$x = \pm \frac{\sqrt{2}}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}}$$
 or $x = \pm \frac{1}{2}$ Simplify radicals.

$$x = \pm \frac{\sqrt{6}}{3}$$
 or $x = \pm \frac{1}{2}$

The solution set is $\left\{ \pm \right\}$

is
$$\left\{\pm\frac{\sqrt{6}}{3}, \pm\frac{1}{2}\right\}$$

Solving Equations Quadratic in Form

Note

Some equations that are quadratic in form are simple enough to avoid using the substitution variable technique. To solve ... $12x^4 - 11x^2 + 2 = 0$ we could factor directly as $(3x^2 - 2)(4x^2 - 1)$, set each factor equal to zero, and then solve the resulting two quadratic equations. *Which method to use is a matter of personal preference.*